A Fast Solver for Truncated-Convex Priors: Quantized-Convex Split Moves
نویسندگان
چکیده
This paper addresses the problem of minimizing multilabel energies with truncated convex priors. Such priors are known to be useful but difficult and slow to optimize because they are not convex. We propose two novel classes of binary Graph-Cuts (GC) moves, namely the convex move and the quantized move. The moves are complementary. To significantly improve efficiency, the label range is divided into even intervals. The quantized move tends to efficiently put pixel labels into the correct intervals for the energy with truncated convex prior. Then the convex move assigns the labels more precisely within these intervals for the same energy. The quantized move is a modified α-expansion move, adapted to handle a generalized Potts prior, which assigns a constant penalty to arguments above some threshold. Our convex move is a GC representation of the efficient Murota’s algorithm. We assume that the data terms are convex, since this is a requirement for Murota’s algorithm. We introduce Quantized-Convex Split Moves algorithm which minimizes energies with truncated priors by alternating both moves. This algorithm is a fast solver for labeling problems with a high number of labels and convex data terms. We illustrate its performance on image restoration.
منابع مشابه
A Novel Qualitative State Observer
The state estimation of a quantized system (Q.S.) is a challenging problem for designing feedback control and model-based fault diagnosis algorithms. The core of a Q.S. is a continuous variable system whose inputs and outputs are represented by their corresponding quantized values. This paper concerns with state estimation of a Q.S. by a qualitative observer. The presented observer in this pape...
متن کاملA fast nonconvex Compressed Sensing algorithm for highly low-sampled MR images reconstruction
In this paper we present a fast and efficient method for the reconstruction of Magnetic Resonance Images (MRI) from severely under-sampled data. From the Compressed Sensing theory we have mathematically modeled the problem as a constrained minimization problem with a family of non-convex regularizing objective functions depending on a parameter and a least squares data fit constraint. We propos...
متن کاملMatrix-Free Convex Optimization Modeling
We introduce a convex optimization modeling framework that transforms a convex optimization problem expressed in a form natural and convenient for the user into an equivalent cone program in a way that preserves fast linear transforms in the original problem. By representing linear functions in the transformation process not as matrices, but as graphs that encode composition of linear operators...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملM/EEG source reconstruction based on Gabor thresholding in the source space
Thanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG) and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are generally applied in the time domain, the time-frequency (TF) characteristics of brai...
متن کامل